1、对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key- value应用场景,如日志信息的存储,对于内容信息不需要完全结构化出来的类CMS应用等。注意hbase针对的仍然是OLTP应用为主。
2、Hive提供完整的SQL实现,通常被用来做一些基于历史数据的挖掘、分析。而HBase不适用与有join,多级索引,表关系复杂的应用场景。
3、HBase的应用场景:大型数据存储:HBase可以处理PB级别的数据量,适合存储大规模的数据,例如日志数据、监控数据、交易数据等。时序数据:HBase可以用于存储时序数据,如速度的展示,天气、温度、风速、车流量等。
4、这个版本的HBase主要针对大型数据集和实时应用场景进行了性能的提升和优化。它引入了新的特性,如内置的Hadoop集群的自动发现和自动管理,这使得用户在部署和管理HBase时更加便捷。此外,HBase x 还引入了修复某些安全性和备份问题的改进以及修复其他内部漏洞补丁,以确保更稳定的性能和安全性能。
1、CassandraCassandra是Apache项目,Facebook开发,适合大数据写入和实时查询,尤其在欺诈检测和位置服务领域。它采用Dynamo和Bigtable技术,无主架构,提供CQL查询,主副本设计。与HBase相比,Cassandra更偏向OLTP场景,且对写多读少的需求更友好。
2、MySQL:关系型数据库,主要面向OLTP,支持事务,支持二级索引,支持sql,支持主从、GroupReplication架构模型(本文全部以Innodb为例,不涉及别的存储引擎)。HBase:基于HDFS,支持海量数据读写(尤其是写),支持上亿行、上百万列的,面向列的分布式NoSql数据库。
3、Vertica的底层存储实现和HBase的不一样。虽然都是叫按列存储,HBase是先将表格按行划分成块,在数据块内部才是按列存储;Vertica的存储比较灵活,它号称可以配置哪些列要放在一起存储,每列都分开就是最基本的按列存储,所有列都和在一起就是按行存储了,不过同一列的数据还是会放在一起。
4、支持列式存储的数据库包括HBase、Cassandra、Hypertable等。 列式存储的原理和优势 列式存储是一种数据存储方式,将数据按列而不是按行进行存储。这种方式与传统的行式存储相比,有着其独特的优势。在大数据处理和分析场景中,列式存储由于其更高的数据压缩率和更高效的聚合操作能力,被广泛使用。
5、如键值对、文档等形式,且易于水平扩展。NoSQL数据库如Cassandra和HBase通常成本较低,部署更为便捷,但对数据一致性控制较弱,不支持复杂的事务处理。比较来看,关系型数据库适合需要严格数据一致性和复杂查询的应用,而非关系型数据库则更适合大数据量和高并发场景,同时在成本上更具优势。
Hive使用Hadoop来分析处理数据,而Hadoop系统是批处理系统,因此不能保证处理的低迟延问题;而HBase是近实时系统,支持实时查询。 Hive不提供row-level的更新,它适用于大量append-only数据集(如日志)的批任务处理。而基于HBase的查询,支持和row-level的更新。
对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key- value应用场景,如日志信息的存储,对于内容信息不需要完全结构化出来的类CMS应用等。注意hbase针对的仍然是OLTP应用为主。
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录结构映射成表。主要关注的是对数据的统计等方面。
实际上,HBase是一个列族数据库,而不是真正的列式数据库。因为允许存放非结构化数据,所以HBase的数据类型只有简单的字符串类型,如果需要细分类型,需要用户自己处理。HBase的四维模型中每个元素:(1)行键(Row Key):最大长度为64KB的任意字符串。与关系型数据库一样,行键是行的唯一标志。
HBase不是一个关系型数据库,它需要不同的方法定义你的数据模型,HBase实际上定义了一个四维数据模型,下面就是每一维度的定义:行键:每行都有唯一的行键,行键没有数据类型,它内部被认为是一个字节数组。
HBase的定位是hadoop的数据库,电脑培训发现是一个典型的Nosql,所以HBase是用来在大量数据中进行低延迟的随机查询的。
容量大:HBase 分布式数据库中的表可以存储成千上万的行和列组成的数据。面向列:HBase 的数据在表中是按照某列存储的,根据数据动态地增加列,并且可以单独对列进行各种操作。
//最终在写回hbase表 save_rdd.saveAsNewAPIHadoopDataset(newAPIJobConfigurationgetConfiguration)sc.stop()从上面的代码可以看出来,使用spark+scala操作hbase是非常简单的。